sábado, 6 de noviembre de 2010

Optimizacion 1

OPTIMIZACION:

En matemáticas la optimización o programación matemática intenta dar respuesta a un tipo general de problemas donde se desea elegir el mejor entre un conjunto de elementos. En su forma más simple, el problema equivale a resolver una ecuación de este tipo:

Donde x = (x1,...,xn) es un vector y representa variables de decisión, f(x) es llamada función objetivo y representa o mide la calidad de las decisiones (usualmente números enteros o reales) y Ω es el conjunto de puntos o decisiones factibles o restricciones del problema.
Algunas veces es posible expresar el conjunto de restricciones Ω como solución de un sistema de igualdades o desigualdades.
Un problema de optimización trata entonces de tomar una decisión óptima para maximizar (ganancias, velocidad, eficiencia, etc.) o minimizar un criterio determinado (costos, tiempo, riesgo, error, etc). Las restricciones significan que no cualquier decisión es posible.
En pocas palabras   La optimización es una aplicación directa del cálculo diferencial y sirve para calcular máximos y mínimos de funciones sujetas a determinadas condiciones. La aplicación práctica de los problemas de optimización es bien clara: calcular superficies o volúmenes máximos, costes mínimos, forma óptima de determinadas figuras...
 Es importante en este tipo de problemas identificar claramente la función a optimizar que suele depender de dos variables. El ejercicio nos dará una condición que liga a ambas y lo que debemos hacer es despejar una de ellas y sustituirla en la función a optimizar, de forma que tengamos una sola variable. A partir de aquí aplicaremos la teoría del cálculo diferencial para identificar máximos o mínimos.

EJEMPLO:
De todos los triángulos isósceles de 12 m de perímetro, hallar los lados del que tome área máxima.
Triángulo 

Ärea
Relacionamos las variables:
2x + 2y = 12
x = 6 − y
Sustituimos en la función:
Sustitución
Derivamos, igualamos a cero y calculamos las raíces.
Raíces de la derivada
Raíces de la derivada
Realizamos la 2ª derivada y sustituimos por 2, ya que la solución y = 0 la descartamos porque no hay un triángulo cuyo lado sea cero.
Derivada 2ª
Derivada 2ª
Derivada 2ª
Por lo que queda probado que en y = 2 hay un máximo.
La base (2y) mide 4m y los lados oblicuos (x) también miden 4 m, por lo que el triangulo de área máxima sería un triangulo equilátero.

miércoles, 3 de noviembre de 2010

Criterios de la Primera y Segunda Derivada , Puntos Críticos Máximos , Mínimos, Inflexion

CRITERIO DE LA PRIMERA DERIVADA
Se llama Criterio de la primera derivada al método o teorema utilizado frecuentemente en el cálculo matemático para determinar los mínimos relativos y máximos relativos que pueden existir en una función mediante el uso de la primera derivada o derivada principal, donde se observa el cambio de signo, en un intervalo abierto señalado que contiene al punto crítico c.

CRITERIO DE LA SEGUNDA DERIVADA
Es un teorema o método del cálculo matemático en el que se utiliza la segunda derivada para efectuar una prueba simple correspondiente a los máximos y mínimos relativos.
Se basa en el hecho de que si la gráfica de una función f es cóncava hacia arriba en un intervalo abierto que contiene a c, yf'(c) = 0,f(c)debe ser un mínimo relativo de f. De manera similar, si la gráfica de una función es cóncava hacia abajo en un intervalo abierto que contiene a c y f'(c) = 0,f(c)debe ser un máximo relativo de f.

PUNTOS CRITICOS MAXIMOS MIMIMOS
Sea c un punto crítico de una función f que es continua en un intervalo abierto I que contiene a c. Si f es derivable en el intervalo, excepto posiblemente en c, entonces f(c) puede clasificarse como sigue."
1. Si f'(x) cambia de negativa a positiva en c, entonces f tiene un mínimo relativo en (c,f(c)).
2. Si f'(x) cambia de positiva a negativa en c, entonces f tiene un máximo relativo en (c,f(c)).
3. Si f'(x) es positiva en ambos lados de c o negativa en ambos lados de c, entonces f(c) no es ni un mínimo ni un máximo relativo. El criterio no decide.

PUNTOS CRITICOS DE INFLEXION

Un punto de inflexión es un punto donde los valores de x de una función continua pasa de un tipo de concavidad a otro. La curva "atraviesa" la tangente. Matemáticamente la derivada segunda de la función f en el punto de inflexión es cero, o no existe.
y'' = 4

y'' = 0 ---> 4 = 0


Derivadas

DERIVADA DE UNA CONSTANTE
Una función constante es aquella que no depende de ninguna variable y su derivada siempre será cero.
f(x)= k                                                                                                                                     f´(x)=0
Ejemplo:
f(x) = 7
f ´(x) = 0

DERIVADA DE LA FUNCIÓN EXPONENCIAL 
Es igual a la misma función por el logaritmo neperiano de la base y por la derivada del exponente..

F(x) = au                      f´(x) = ut. au .lna 
Ejemplo: 




Derivada de un producto
La derivada de un producto de dos funciones es equivalente a la suma entre el producto de la primera función sin derivar y la derivada de la segunda función y el producto de la derivada de la primera función por la segunda función




Consideremos la siguiente función como ejemplo:
h(x) = (4x + 2)(3x7 + 2)
Identificamos a f(x) = (4x + 2) y g(x) = (3x7 + 2), utilizando las reglas anteriormente expuestas, vemos que:
f'(x) = 4 y que g'(x) = 21x6
Por lo tanto





Simplificando y organizando el producto obtenido nos queda
h'(x) = 84x7 + 12x7 + 42x6 + 8
Sumamos términos semejantes y finalmente obtenemos la derivada:
h'(x) = 96x7 + 42x6 + 8



DERIVADA DE UN COCIENTE





Es decir:
"La derivada de un cociente de dos funciones es la función ubicada en el denominador por la derivada del numerador menos la derivada de la función en el denominador por la función del numerador sin derivar, todo sobre la función del denominador al cuadrado"
Este caso se relaciona mucho con la regla de derivada de un producto, pero hay que tener en cuenta la resta y el orden de los factores. Pero ya explicando lo dicho anteriormente consideremos como ejemplo la siguiente función:




Ahora se trabaja el enunciado anterior el cual nos dice que multipliquemos el denominador que en este caso es g(x) = 2x y se multiplique por la derivada del numerador que seria f'(x) = 3; luego la segunda parte dice que tomemos la función del numerador (f(x)) sin derivar y lo multipliquemos por la derivada de g(x) = 2x, que seria g'(x) = 2, todo esto lo dividimos entre el denominador al cuadrado, asi:





Ahora todo es cuestión de simplificar:




 
DERIVADA DE UNA RAIZ
La derivada de la raíz enésima de una función es igual a la derivada del radicando partida por la n veces la raíz enésima de la función radicando elevada a n menos uno.




La derivada de la raíz cuadrada de una función es igual a la derivada del radicando partida por el duplo de la raíz.



Ejemplo:










Derivada en cadena
Si g es derivable en a y f es derivable en g(a) entonces f°g es derivable en a y se verifica:
(f°g)´(a) = f´ (g(a)).g´(a)

Ejemplo:




Derivada implícita

Funciones implícitas

Una correspondencia o una función está definida en forma implícita cuando no aparece despejada la y sino que la relación entre x e y viene dada por una ecuación de dos incógnitas cuyo segundo miembro es cero.

Derivadas de funciones implícitas

Para hallar la derivada en forma implícita no es necesario despejar y. Basta derivar miembro a miembro, utilizando las reglas vistas hasta ahora y teniendo presente que:

x'=1

En general y'≠1.

Por lo que omitiremos x' y dejaremos y'.




Cuando las funciones son más complejas vamos a utilizar una regla para facilitar el cálculo:





Malla Del Grupo , Pregunta Problematizadora, Objetivo De Grado y Conclusiones

OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y  derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos, áreas, tiempo. 

PREGUNTA PROBLEMATIZADORA:

¿CUÁLES DEBEN SER LAS DIMENSIONES ÓPTIMAS PARA QUE EL COSTO DEL MATERIAL EMPLEADO EN UNA LATA DE CERVEZA, COCACOLA O ATÚN SEA MINIMO?

CONCLUSIONES:

·                  La malla es una apoyo, que sirve de instructor a los estudiantes, para que estos estén instruidos referente a las actividades que se van a realizar, la cual  plantea un objetivo principal que al finalizar los cuatro períodos se debe cumplir
·                  La pregunta problematizadora se va resolviendo de acuerdo a lo aprendido en los cuatro periodos
·                  Se verán conceptos básicos de derivadas, limites resolviendo problemas de la vida, manejando mínimos y máximos, cantidades, costos, áreas, tiempo.


GRADO:        ONCE

PERIODO:    PRIMERO
INTENSIDAD HORARIA :   3 horas semanales

DOCENTE:                           GUILLERMO LEÓN ROLDÁN SOSA                      
OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y  derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos, áreas, tiempo.
PREGUNTA PROBLEMATIZADORA:

¿CUÁLES DEBEN SER LAS DIMENSIONES ÓPTIMAS PARA QUE EL COSTO DEL MATERIAL EMPLEADO EN UNA LATA DE CERVEZA, COCACOLA O ATÚN SEA MINIMO?

CONTENIDOS

ESTANDARES

COMPETENCIAS

LOGROS

INDICADORES DE DESEMPEÑO

INSTANCIAS VERIFICADORAS

ACCIONES EVALUATIVAS

FECHAS
Desigualdades e Inecuaciones.
Axiomas de orden en R.
Intervalos.
Propiedades de las desigualdades
Problemas.
VALOR ABSOLUTO.
Definición.
Propiedades.
Ejercicios
FUNCIONES.
Definición.
Funciones básicas
Dominio, Rango
Problemas de la vida.
 Pensamiento numérico y sistemas numéricos


Pensamiento variacional   y sistemas algebraicos y analíticos



























Formular, plantear, transformar y resolver problemas a partir de situaciones de la vida cotidiana, de las otras ciencias y de las matemáticas mismas.

Utilizar diferentes registros de representación o sistemas de notación simbólica para crear, expresar y representar ideas matemáticas; para utilizar y transformar
dichas representaciones y, con ellas, formular y sustentar puntos de vista
Usar la argumentación, la prueba y la refutación, el ejemplo y el contraejemplo, como medios de validar y rechazar conjeturas, y avanzar en el camino hacia la demostración.

Dominar procedimientos y algoritmos matemáticos y conocer cómo, cuándo y porqué usarlos de manera
 flexible y eficaz.
 Resolver inecuaciones por  el método del cementerio
Y el método analítico.

Resolver ecuaciones e inecuación que contienen valores absolutos.

Aplicar la definición de función a diferentes relaciones.

Resolver problemas que involucran funciones.

Resuelve inecuaciones por  el método del cementerio
Y el método analítico.

Resuelve ecuaciones e inecuación que contienen valores absolutos.

Aplica la definición de función a diferentes



Resuelve problemas que involucran funciones.
1. La solución de inecuaciones por  el método del cementerio
Y el método analítico.

2. La solución de   ecuaciones e inecuación que contienen valores absolutos.

3.  La aplicación de  la definición de función a diferentes
relaciones

4. La solución a problemas que involucran funciones.



El valor y el respeto al trabajo y la participación del otro, en todos los ámbitos académicos y de convivencia.


 Evaluación escrita



Evaluación escrita



Evaluación escrita


Evaluación escrita







.
Semana 4



Semana 5



Semana 6


Semana 8



GRADO:        ONCE


PERIODO:     SEGUNDO


INTENSIDAD HORARIA :    3 horas semanales

DOCENTE:                            GUILLERMO LEÓN ROLDÁN SOSA                
OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y  derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos, áreas, tiempo.
PREGUNTA PROBLEMATIZADORA:

¿CUÁLES DEBEN SER LAS DIMENSIONES ÓPTIMAS PARA QUE EL COSTO DEL MATERIAL EMPLEADO EN UNA LATA DE CERVEZA, COCACOLA O ATÚN SEA MINIMO?

CONTENIDOS

ESTANDARES

COMPETENCIAS

LOGROS

INDICADORES DE DESEMPEÑO

INSTANCIAS VERIFICADORAS

ACCIONES EVALUATIVAS

FECHAS
Transformación de funciones.
Desplazamientos
Verticales.
Desplazamiento horizontal.
Reflexión.
Estiramiento y acortamiento vertical.
Acortamiento y alargamiento horizontal.
Función par e impar.
Dominio, Rango.
Interceptos.
Función uno a uno
Y sobre.
Función Inyectiva.
Función Inversa.
 Pensamiento numérico y sistemas numéricos


Pensamiento variacional   y sistemas algebraicos y analíticos


























Formular, plantear, transformar y resolver problemas a partir de situaciones de la vida cotidiana, de las otras ciencias y de las matemáticas mismas.

Utilizar diferentes registros de representación o sistemas de notación simbólica para crear, expresar y representar ideas matemáticas; para utilizar y transformar
dichas representaciones y, con ellas, formular y sustentar puntos de vista
Usar la argumentación, la prueba y la refutación, el ejemplo y el contraejemplo, como medios de validar y rechazar conjeturas, y avanzar en el camino hacia la demostración.

Dominar procedimientos y algoritmos matemáticos y conocer cómo, cuándo y porqué usarlos de manera
 flexible y eficaz.
 Graficar funciones partiendo de funciones básicas, empleando los conceptos de traslación, estiramiento, encogimiento y reflexión.

Determinar el Dominio, el Rango y los intersectos de una función.


Identificar, clasificar una función en par o impar.

Identificar si una función tiene inversa y   calcularla.
 Grafica funciones partiendo de funciones básicas, empleando los conceptos de traslación, estiramiento, encogimiento y reflexión.



Determina el Dominio, el Rango y los intersectos de una función.


Identifica, clasifica una función en par o impar.


Identifica si una función tiene inversa y la calcula






1. La gráfica de una función usando funciones básicas, desplazamientos verticales y horizontales.
2. La gráfica de una función usando funciones básicas, alargamientos y reflexiones verticales y horizontales
3. El cálculo del Dominio, Rango, Interceptos.

4. La determinación si la gráfica de una FUNCIÓN es inyectiva y, si por lo tanto tiene
Inversa.

.

El valor y el respeto al trabajo y la participación del otro, en todos los ámbitos académicos y de convivencia.

 Evaluación escrita



Evaluación escrita



Evaluación escrita



Evaluación escrita







.
Semana 4



Semana 5



Semana 6


Semana 8

RECURSOS PEDAGOGICOS
Ordenadores, programas o proyectos virtuales como DESCARTES y GEOGEBRA, DVD’, sala de informática, Internet, libros virtuales, papel cuadriculado, lápiz, reglas, escuadras, libros , fotocopias, borradores, tizas, marcadores, GRUPO GALOIS.





GRADO:        ONCE

PERIODO:     TERCERO





INTENSIDAD HORARIA :    3 horas semanales

DOCENTE:                            GUILLERMO LEÓN ROLDÁN SOSA                      
OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y  derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos, áreas, tiempo.
PREGUNTA PROBLEMATIZADORA:

¿CUÁLES DEBEN SER LAS DIMENSIONES ÓPTIMAS PARA QUE EL COSTO DEL MATERIAL EMPLEADO EN UNA LATA DE CERVEZA, COCACOLA O ATÚN SEA MINIMO?

CONTENIDOS

ESTANDARES

COMPETENCIAS

LOGROS

INDICADORES DE DESEMPEÑO

INSTANCIAS VERIFICADORAS

ACCIONES EVALUATIVAS

FECHAS
LIMITES.
Definición, ejemplos, ejercicios
Continuidad,
Teorema del valor intermedio.
DERIVADA.
Recta tangente y normal a una curva.
Velocidad instantánea.
Definición de Derivada.
Reglas de derivación.
Regla de la cadena
Derivada implícita.
 Pensamiento numérico y sistemas numéricos


Pensamiento variacional   y sistemas algebraicos y analíticos


























Formular, plantear, transformar y resolver problemas a partir de situaciones de la vida cotidiana, de las otras ciencias y de las matemáticas mismas.

Utilizar diferentes registros de representación o sistemas de notación simbólica para crear, expresar y representar ideas matemáticas; para utilizar y transformar
dichas representaciones y, con ellas, formular y sustentar puntos de vista
Usar la argumentación, la prueba y la refutación, el ejemplo y el contraejemplo, como medios de validar y rechazar conjeturas, y avanzar en el camino hacia la demostración.

Dominar procedimientos y algoritmos matemáticos y conocer cómo, cuándo y porqué usarlos de manera
 flexible y eficaz.
 Calcular límites cuando la variable tiende a un valor finito.


Eliminar indeterminaciones
de la forma 0/0.

Determinar la continuidad de una función.

Calcular la derivada de funciones.
 Calcula límites cuando la variable tiende a un valor finito.

Elimina indeterminaciones
de la forma 0/0.

Determina la continuidad de una función.


Calcula la derivada de funciones.


1. El cálculo de límites cuando la variable tiende a un valor finito.

2. La eliminación de indeterminaciones de la forma 0/0.

3. La determinación de la continuidad o no de una función.

4. El calcular la derivada de una función real.

.

El valor y el respeto al trabajo y la participación del otro, en todos los ámbitos académicos y de convivencia.


 Evaluación escrita


Evaluación escrita

Evaluación escrita



Evaluación escrita







.
Semana 4


Semana 5

Semana 6


Semana 8

RECURSOS PEDAGOGICOS
Ordenadores, programas o proyectos virtuales como DESCARTES y GEOGEBRA, DVD’, sala de informática, Internet, libros virtuales, papel cuadriculado, lápiz, reglas, escuadras, libros , fotocopias, borradores, tizas, marcadores, GRUPO GALOIS.
GRADO:        ONCE

PERIODO:     CUARTO
INTENSIDAD HORARIA :    3 horas semanales

DOCENTE:                            GUILLERMO LEÓN ROLDÁN SOSA
                          
OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y  derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos, áreas, tiempo.
PREGUNTA PROBLEMATIZADORA:

¿CUÁLES DEBEN SER LAS DIMENSIONES ÓPTIMAS PARA QUE EL COSTO DEL MATERIAL EMPLEADO EN UNA LATA DE CERVEZA, COCACOLA O ATÚN SEA MINIMO?

CONTENIDOS

ESTANDARES

COMPETENCIAS

LOGROS

INDICADORES DE DESEMPEÑO

INSTANCIAS VERIFICADORAS

ACCIONES EVALUATIVAS

FECHAS
APLICACIONES
DE LA DERIVADA.
Máximos y mínimos relativos y absolutos.
Números críticos.
Teorema del valor medio y el valor extremo.
Criterios de la primera y segunda derivada
Concavidad.

Problemas de OPTIMIZACIÖN.
 Pensamiento numérico y sistemas numéricos


Pensamiento variacional   y sistemas algebraicos y analíticos


























Formular, plantear, transformar y resolver problemas a partir de situaciones de la vida cotidiana, de las otras ciencias y de las matemáticas mismas.

Utilizar diferentes registros de representación o sistemas de notación simbólica para crear, expresar y representar ideas matemáticas; para utilizar y transformar
dichas representaciones y, con ellas, formular y sustentar puntos de vista
Usar la argumentación, la prueba y la refutación, el ejemplo y el contraejemplo, como medios de validar y rechazar conjeturas, y avanzar en el camino hacia la demostración.

Dominar procedimientos y algoritmos matemáticos y conocer cómo, cuándo y porqué usarlos de manera
 flexible y eficaz.
 Hallar máximos y mínimos relativos y absolutos de una función.

Obtener valores críticos de una función.

Determinar intervalos de crecimiento y decrecimiento.

Determinar concavidad.

Resolver problemas de Optimización

 Halla máximos y mínimos relativos y absolutos de una función.

Obtiene valores críticos de una función.

Determina intervalos de crecimiento y decrecimiento.

Determina concavidad.

Resuelve problemas de Optimización








1. Los máximos y mínimos relativos y absolutos de una función.

2. Los valores críticos de una función.

3. Los intervalos de crecimiento y decrecimiento. La
Determinación de la concavidad.

4. La solución de problemas de Optimización





El valor y el respeto al trabajo y la participación del otro, en todos los ámbitos académicos y de convivencia.


 Evaluación escrita

Evaluación escrita

Evaluación escrita

Evaluación escrita







.
Semana 4

Semana 5

Semana 6

Semana 8

RECURSOS PEDAGOGICOS
Ordenadores, programas o proyectos virtuales como DESCARTES y GEOGEBRA, DVD’, sala de informática, Internet, libros virtuales, papel cuadriculado, lápiz, reglas, escuadras, libros , fotocopias, borradores, tizas, marcadores, GRUPO GALOIS.